Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
vom 26.04.2022, aktuelle Version,

Stehende Welle

Eine stehende Welle (schwarz) als Überlagerung zweier gegenläufiger Wanderwellen (rot und blau). Die Knoten der stehenden Welle befinden sich an den roten Punkten.

Eine stehende Welle, auch Stehwelle, ist eine Welle, deren Auslenkung an bestimmten Stellen immer bei Null verbleibt. Sie kann als Überlagerung zweier gegenläufig fortschreitender Wellen gleicher Frequenz und gleicher Amplitude aufgefasst werden. Die gegenläufigen Wellen können aus zwei verschiedenen Erregern stammen oder durch Reflexion einer Welle an einem Hindernis entstehen. Bei Wasserwellen siehe Clapotis.

Ein mechanisches Beispiel einer eindimensionalen stehenden Welle ist eine Seilwelle, bei der man ein Seilende auf und ab bewegt und so eine fortschreitende Welle im Seil erzeugt. Ist das andere Seilende befestigt, so wird die Welle dort reflektiert und läuft auf dem Seil zurück. Als Folge sieht man keine fortschreitende Welle mehr, sondern das Seil vollführt eine Schwingung, bei der bestimmte Stellen in Ruhe bleiben (Schwingungsknoten[1] oder Wellenknoten, auch Schnelleknoten), während andere mit großer Schwingungsweite (Amplitude) hin und her schwingen (Wellenbäuche oder Schwingungsbäuche, auch Schnellebauch).

Hintergrund

Der Abstand zweier Wellenknoten oder zweier Wellenbäuche ist die halbe Wellenlänge der ursprünglichen fortschreitenden Wellen.

Bei manchen stehenden Wellen ist eine zweite Größe wichtig, deren Knoten und Bäuche um eine Viertel-Wellenlänge gegenüber denen der ersten Größe verschoben sind. Bei einer stehenden elektromagnetischen Welle sind die beiden Größen die elektrische und die magnetische Feldstärke, bei einer stehenden Schallwelle in einem Blasinstrument der Schalldruck und die Schallschnelle. In diesen Fällen sind die Begriffe Bauch und Knoten daher doppeldeutig; klar sind Bezeichnungen wie Druckbauch, Druckknoten, Schnellebauch (Amplitudenbauch), Schnelleknoten (Amplitudenknoten).

Wenn die stehende Welle mittels zweier gleichphasiger (synchron schwingender) Erreger erzeugt wird, befindet sich ein (Amplituden)bauch genau in der Mitte zwischen ihnen, da die Wellen hier gleichzeitig eintreffen und sich stets gegenseitig verstärken. Eine Viertel-Wellenlänge hiervon entfernt beträgt die Zeitdifferenz des Eintreffens eine halbe Schwingungsperiode. Die Wellen sind hier gegenphasig und löschen sich aus, es entsteht ein (Amplituden)knoten. (Knotenpunkt) Durch Verallgemeinerung dieser Überlegung findet man die Bedingungen:

Bauch: Der Abstand d eines Schwingungsbauches vom Mittelpunkt ist ein Vielfaches der halben Wellenlänge.

Knoten: Der Abstand d eines Schwingungsknotens vom Mittelpunkt ist ein Vielfaches der halben Wellenlänge plus ein Viertel.

Die von der Welle transportierte Energie wird durch die Reflexion zurückgeworfen. Auf einem Wellenleiter mit durch vollständige Reflexion entstandener stehender Welle findet daher kein Energietransport statt. Wird die Welle nur teilweise reflektiert, ergibt sich eine Überlagerung von stehender und fortschreitender Welle. In diesem Fall wird Energie transportiert.

Stehende Wellen zwischen zwei Reflektoren

Zwischen zwei Reflektoren können sich nur stehende Wellen mit bestimmten Wellenlängen bilden. Die Frequenzen zu diesen Wellenlängen werden als Eigenfrequenzen oder Eigenresonanzen bezeichnet.

Welche Randbedingung dazu führt, dass die Wellenlängen nicht beliebig sein können, hängt von der Art der betrachteten Welle ab. Beispielsweise muss bei fest eingespannten Enden einer schwingenden Saite an beiden Enden jeweils ein Schwingungsknoten vorliegen, wie in der Abbildung unten gezeigt.

Bei einer stehenden elektromagnetischen Welle gilt, dass die elektrische Feldstärke am reflektierenden Leiter null sein muss, wohingegen die magnetische Feldstärke dort immer einen Schwingungsbauch besitzt. Bei der resultierenden elektromagnetischen Welle sind nun elektrisches Feld und magnetisches Feld um 90° phasenverschoben, wobei das E- und H-Feld der hin- bzw. rücklaufenden Welle phasengleich sind.

Bei einer stehenden (akustischen) Longitudinalwelle tritt an jeder reflektierenden Wand in einem Raum immer ein Schalldruckbauch auf; siehe Raummoden. In der Akustik interessiert überwiegend die Schallfeldgröße als Schalldruck.

Stehwellenverhältnis

Ein Maß für den Anteil stehender Wellen auf einem elektrischen Leiter ist das Stehwellenverhältnis (englisch: standing wave ratio = SWR).

Anwendungen

Weitere Bilder

Durch die Bewegung der Moleküle können auch größere Teilchen wie Wassertropfen bewegt werden. Die Tropfen sammeln sich in den Schwingungsknoten einer stehenden Welle, die sich aufgrund eines unterhalb der Tropfen angeordneten Schallreflektors ausbildet (Reflektor wurde nicht mitfotografiert). Der Abstand zwischen Wandlerstirnfläche und Reflektor muss passend zur Wellenlänge in Luft gewählt werden.

Siehe auch

Literatur

  • Ernst Florens Friedrich Chladni: Entdeckungen über die Theorie des Klanges. Weidmanns Erben und Reich, Leipzig 1787 (77 S., online).
  • W. Demtröder: Experimentalphysik 1. 5. Auflage, Springer 2008, ISBN 978-3-540-79294-9
  • Andreas Friesecke: Die Audio-Enzyklopädie. Ein Nachschlagewerk für Tontechniker. Saur, München 2007, ISBN 978-3-598-11774-9.
  • Philipp Bohr: Physik. Lehrbuch für die Oberstufe, Norderstedt 2004, ISBN 3-8334-5041-X.
  • Peter Kaltenbach, Heinrich Meldau: Physik und Funktechnik Für Seefahrer. Friedrich Vieweg & Sohn, Braunschweig 1938.
  • F. W. Gundlach: Grundlagen der Höchstfrequenztechnik. Springer, Berlin/Heidelberg 1950.
Commons: Stehende Wellen  – Sammlung von Bildern, Videos und Audiodateien

Anmerkung

  1. Der Begriff Schwingungsknoten lässt sich bereits im frühen 18. Jahrhundert belegen. Chladni schrieb 1787 auf S. 2 dazu: „Die Stellen, wo die schlangenförmigen Schwingungslinien die Axe durchschneiden, werden von Sauveur, de la Hire und andern, Schwingungsknoten genennt; sie bleiben in Ruhe, während daß die übrigen Theile des klingenden Körpers sich bewegen, und man kann an einer oder mehreren solchen Stellen den Körper berühren, oder Dämpfungen anbringen, ohne daß der Klang dadurch gehemmt wird, welches aber so gleich geschieht, wenn man eine Stelle zwischen zween Schwingungsknoten berühret, oder auf andere Art dämpft.“

License Information of Images on page#

Image DescriptionCreditArtistLicense NameFile
The standing waves experiment prepared and performed by Prof. Oliver Zajkov at the Physics Institute at the Ss. Cyril and Methodius University of Skopje , Macedonia. Eigenes Werk Deni Ingilizovski
CC BY-SA 4.0
Datei:63. Стојни бранови.ogg
Circular Standing Wave Original Yuta Aoki
CC BY-SA 3.0
Datei:Circular Standing Wave.gif
The Wikimedia Commons logo, SVG version. Original created by Reidab ( PNG version ) SVG version was created by Grunt and cleaned up by 3247 . Re-creation with SVG geometry features by Pumbaa , using a proper partial circle and SVG geometry features. (Former versions used to be slightly warped.) Reidab , Grunt , 3247 , Pumbaa
CC BY-SA 3.0
Datei:Commons-logo.svg
Begriffsklärungs-Icon (Autor: Stephan Baum) Eigenes Werk ( Originaltext: Own drawing by Stephan Baum ) Original Commons upload as File:Logo Begriffsklärung.png by Baumst on 2005-02-15 Stephan Baum
Public domain
Datei:Disambig-dark.svg
Darstellung einer Stehenden Welle mit Styroporkügelchen in einem beschallten Glasrohr im Dynamikum in Pirmasens Eigenes Werk LoKiLeCh
CC BY-SA 3.0
Datei:Dynamikum Stehende Welle.ogg
Darstellung einer Stehenden Welle mit Styroporkügelchen in einem beschallten Glasrohr im Dynamikum in Pirmasens Eigenes Werk LoKiLeCh
CC BY-SA 3.0
Datei:Dynamikum Stehende Welle.ogv
A statically mounted Pratt & Whitney J58 engine with full afterburner on disposing of the last of the SR-71 fuel prior to program termination. The bright areas seen in the exhaust are known as shock diamonds. NASA
Public domain
Datei:J58 AfterburnerT.jpeg
Electric force vector (E) and magnetic force vector (H) of a standing wave. Eigenes Werk ZooFari
Public domain
Datei:Standing wave.svg
Another standing wave . Eigenes Werk Lucas Vieira
Public domain
Datei:Standing wave 2.gif
Animation showing how two running waves interfere to create a standing wave pattern. Eigenes Werk Snaily
Public domain
Datei:Standing waves1.gif