Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
vom 15.05.2022, aktuelle Version,

Gasplanet

Die vier bekannten Riesenplaneten des Sonnensystems (von unten nach oben): Jupiter, Saturn, Uranus und Neptun
Masseverteilung der Riesenplaneten untereinander

Ein Gasplanet oder Gasriese („planetarer Gasriese“) ist in der Astronomie ein Riesenplanet, der überwiegend aus leichten Gasen wie Wasserstoff und Helium besteht. Früher galten vier Planeten des Sonnensystems als Gasriesen: Jupiter, Saturn, Uranus und Neptun. Seit den 1990er Jahren wenden Astronomen zunehmend den Begriff Gasriese nur noch auf Jupiter und Saturn an und klassifizieren Uranus und Neptun, die eine andere Zusammensetzung haben, als Eisriesen.[1]

Häufig werden Gasplaneten auch als jupiterähnliche oder – aus dem Lateinischen – als jovianische Planeten bezeichnet.

Überblick

Gasplaneten haben keine feste Oberfläche. Das Gas wird mit zunehmender Tiefe dichter, da es durch die darüber befindlichen Schichten komprimiert wird. Dennoch können diese Planeten einen festen Kern haben – und nach der Kern-Aggregations-Hypothese ist solch ein Kern für ihre Entstehung sogar notwendig. Der Großteil der Planetenmasse besteht jedoch aus leichten Gasen, die im Innern aufgrund des hohen Drucks und niedriger Temperaturen in flüssigem oder festem Aggregatzustand vorliegen.

Im Sonnensystem gibt es vier Riesenplaneten, darunter zwei Gasriesen, Jupiter und Saturn. Alle Riesenplaneten des Sonnensystems haben – im Unterschied zu den kleineren, terrestrischen Planeten aus Gestein und Metallen – ein mehr oder weniger ausgeprägtes Ringsystem und zahlreiche Satelliten.

Das Fehlen einer sichtbaren, festen Oberfläche macht es zunächst schwierig, die Radien bzw. Durchmesser von Gasplaneten anzugeben. Wegen der nach innen kontinuierlich zunehmenden Dichte kann man aber jene Höhe berechnen, in der der Gasdruck gerade so hoch ist wie der Luftdruck, der an der Erdoberfläche herrscht (auf Meeresniveau 1 atm oder 1013 mbar). Was man bei einem Blick auf Jupiter oder Saturn sieht, sind ausnahmslos die obersten Wolkenstrukturen innerhalb ihrer Atmosphären.

Gürtel und Zonen

Alle vier Riesenplaneten unseres Sonnensystems rotieren relativ schnell. Dies verursacht Windstrukturen, die in Ost-West-Bänder oder -streifen aufbrechen. Diese Bänder sind bei Jupiter sehr auffällig, dezenter bei Neptun und Saturn, auf Uranus hingegen kaum nachweisbar.

Bei den in der jovianischen Atmosphäre sichtbaren Bändern handelt es sich um im Uhrzeigersinn drehende Ströme von Materie. Sie werden in Zonen und Gürtel aufgeteilt, die den Planeten parallel zum Äquator umkreisen:

  • Die Zonen sind die helleren Bänder und befinden sich in der höheren Atmosphäre. Sie bilden Hochdruckgebiete mit inneren Aufwinden.
  • Die Gürtel sind die dunkleren Bänder. Diese stellen Tiefdruckgebiete dar und befinden sich in der unteren Atmosphäre; in ihrem Inneren herrschen Abwinde.

Diese Strukturen sind grob mit Hoch- und Tiefdruckzellen in der irdischen Atmosphäre vergleichbar, wobei sie sich doch erheblich von diesen unterscheiden. Im Gegensatz zu kleinen lokalen Zellen von Druckgebieten umspannen die Bänder entlang der Breitengrade (latitudinal) den ganzen Planeten. Dies scheint an der schnellen Rotation, die wesentlich höher als die der Erde ist, und der darunterliegenden Symmetrie des Planeten zu liegen: Es gibt schließlich keine Landmassen oder Gebirge, welche die schnellen Winde bremsen könnten.

Es gibt aber auch kleinere, lokale Strukturen, etwa Flecken von unterschiedlicher Größe und Färbung. Das auffälligste Merkmal Jupiters ist der Große Rote Fleck, der seit mindestens 300 Jahren existiert. Diese Strukturen stellen gewaltige Stürme dar. Bei einigen dieser Flecken treten Gewitter auf: Astronomen haben bei etlichen dieser „Spots“ Blitze beobachtet.

Aufbau

Schematischer Aufbau von Jupiter, Saturn, Uranus und Neptun (v.  l.  n.  r.) im Größenvergleich mit der Erde (oben).

Im Sonnensystem haben die planetaren Gasriesen Jupiter und Saturn eine dicke Atmosphäre, die hauptsächlich aus Wasserstoff und Helium besteht, aber auch Spuren anderer Stoffe wie Ammoniak enthält. Der Großteil des Wasserstoffes ist jedoch in flüssiger Form vorhanden, der auch die Hauptmasse dieser Planeten ausmacht. Die tieferen Schichten des flüssigen Wasserstoffes stehen oft unter so starkem Druck, dass dieser metallische Eigenschaften bekommt. Metallischer Wasserstoff ist nur unter solch extremem Druck stabil. Berechnungen legen nahe, dass felsiges Material vom Kern im metallischen Wasserstoff gelöst ist[2] und daher bei größeren Gasplaneten auch der Kern keine feste Oberfläche besitzt.

Die Eisriesen im Sonnensystem, Uranus und Neptun, bestehen nur zu einem vergleichsweise kleinen Anteil aus Wasserstoff und Helium, nämlich zum Großteil aus Wasser (Eis), Ammoniak und Methan.

Entstehungsmodelle

Als Erklärung der Entstehung von Gasplaneten konkurrieren zwei Modelle mit unterschiedlichem Ansatz.

  • Nach dem Modell der Kern-Aggregations-Hypothese bilden sich in der um den jungen Zentralstern rotierenden protoplanetaren Scheibe aus Gas und Staub durch Kollisionen von Planetesimalen zuerst Verdichtungen aus den festen, also felsigen und metallischen Bestandteilen, aus denen dann die Kerne der Riesenplaneten entstehen. Diese ziehen erst ab ihrer Herausbildung das umgebende Gas an.
  • Nach dem anderen Modell, der Scheiben-Instabilitäts-Hypothese, bilden sich in der Akkretionsscheibe lokale Instabilitäten, deren Gas und Staub von einer bestimmten Massekonzentration an unter der eigenen Anziehungskraft kollabieren. In diesem Prozess sinken die festen und somit schwereren Bestandteile der sich weiter verdichtenden Wolkenstruktur in deren Zentrum und bilden den Kern des entstehenden Gasplaneten.

Im Modell der Scheibeninstabilität entstehen verhältnismäßig kleinere Planetenkerne als im Fall der Kernaggregation, die bei den Beispielen von Jupiter und Saturn deutlich weniger als zehn Erdmassen aufweisen[3].

Exoplaneten und Zwergsterne

Auch viele der Exoplaneten, die in den letzten Jahren bei anderen Sternen entdeckt wurden, scheinen Gasriesen zu sein. Allerdings unterscheiden sich diese Exoplaneten häufig von den Gasriesen in unserem Sonnensystem. Oberhalb von etwa der 13-fachen Masse des Jupiters, was 1,2 % der Sonnenmasse entspricht, setzen wegen der großen Hitze und des enormen Drucks im Inneren bereits erste Kernfusionsprozesse ein. Dies sind im Wesentlichen

  • die Deuteriumfusion, bei der ab 13 Jupitermassen ein Deuteriumkern und ein Proton zu Helium-3 verschmelzen, sowie
  • die Lithiumfusion, bei der ab etwa 65 Jupitermassen bzw. Kerntemperaturen über zwei Millionen Kelvin ein Lithium-7 mit einem Proton reagiert.

Himmelskörper über 13 Jupitermassen (MJ) sind jedoch noch keine Sterne, sondern so genannte Braune Zwerge. In ihnen findet noch keine Wasserstoff-Helium-Fusion statt, die erst ab etwa 75 Jupitermassen einsetzt und die Hauptenergiequelle eines normalen Sterns ist. Nach der neueren Definition für Braune Zwerge durch Fusionsprozesse beträgt die Obergrenze für einen Planeten also 13 Jupitermassen. Hat ein Gasriese eine Masse über 13 MJ, beginnt die Gaskugel – im Gegensatz zu einem Planeten – Fusionsenergie freizusetzen und wird bis etwa 70 MJ (7 % der Sonnenmasse) als Brauner Zwerg bezeichnet, kann den Kontraktionsprozess aber, anders als ein Stern, durch diese Energie noch nicht stabilisieren. Erst noch massereichere Himmelskörper sind tatsächlich Sterne.

Es gibt auch „vagabundierende Planeten“ bzw. Objekte planetarer Masse, die keinem Sternensystem angehören, unter der Masse von Braunen Zwergen liegen und damit Gasplaneten ähneln. Ein ähnliches Phänomen sind die Sub-Brown Dwarfs, wobei der Unterschied vor allem in der Temperatur und möglicherweise der Entstehungsgeschichte begründet werden könnte.

Siehe auch

Commons: Gasplanet  – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Gasplanet  – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Jonathan I. Lunine: The Atmospheres of Uranus and Neptune. In: Annual Review of Astronomy and Astrophysics. 31, September 1993, S. 217–263. bibcode:1993ARA&A..31..217L. doi:10.1146/annurev.aa.31.090193.001245.
  2. ausserdem.info: Felsiges Gestein in Gasriesen könnte in Wasserstoff aufgelöst sein (Memento vom 14. Februar 2012 im Internet Archive) 22. Dezember 2011
  3. Astronomie-heute.de: Saturns Kern rotiert schneller als gedacht 10. September 2007

License Information of Images on page#

Image DescriptionCreditArtistLicense NameFile
The Wikimedia Commons logo, SVG version. Original created by Reidab ( PNG version ) SVG version was created by Grunt and cleaned up by 3247 . Re-creation with SVG geometry features by Pumbaa , using a proper partial circle and SVG geometry features. (Former versions used to be slightly warped.) Reidab , Grunt , 3247 , Pumbaa
CC BY-SA 3.0
Datei:Commons-logo.svg
Gasriesen: Interner Aufbau Jupiter Jupiter besteht hauptsächlich aus Wasserstoff und Helium. Im Vergleich zu Planeten mit harter Oberfläche (die Erde zum Beispiel), ist die Oberfläche von Jupiter gasförmig-flüssig, die die Grenze zwischen den Planeten selbst und der Atmosphäre fließend macht bzw. nicht genau festzulegen ist. Unter der etwa 1000 km dicken Atmosphäre liegt eine Schicht von flüssigem Wasserstoff, die sich ihrerseits bis zu einer Tiefe von 20.000 km erstreckt. Noch weiter innen wird eine Schicht von flüssigem metallischem Wasserstoff bei einem Druck von 3 Millionen bar angenommen. Es wird vermutet, dass der Kern des Planeten aus einer Eisen-Nickel-Legierung und Felsgestein besteht. Die Temperatur wird dabei auf über 20.000 °C geschätzt. Saturn Wie Jupiter ist auch Saturn hauptsächlich aus Wasserstoff und Helium aufgebaut und seine Dichte wird als sehr gering betrachtet. Tatsächlich beträgt Saturns durchschnittliche Dichte nur 2/3 der von Wasser. Die Atmosphäre von Saturn umfasst in absteigender Reihenfolge der Höhe eine Schicht Ammoniak, eine Ebene von Ammoniumsulfid und eine Schicht aus Eis. Darunter besteht die Oberfläche von Saturn aus flüssigem Wasserstoff (wie dies auch beim Jupiter der Fall ist), die ihrerseits wieder über einer Schicht aus flüssigem metallischem Wasserstoff liegt. Es wird angenommen, dass die Schicht an flüssigem Wasserstoff beim Saturn dicker ist als beim Jupiter, während die Schicht des flüssigen metallischen Wasserstoffs dünner sein könnte. Das Zentrum des Planeten ist vermutlich aus Felsgestein und Eis aufgebaut. Uranus Uranus ist in seiner Zusammensetzung gasförmig, hauptsächlich bestehend aus Wasserstoff und Helium, wie dies auch bei Jupiter und Saturn der Fall ist. Die Atmosphäre besteht hauptsächlich aus Wasserstoff, beinhaltet aber auch Helium und Methan. Der Kern des Planeten ist wahrscheinlich aus Felsen und Eis aufgebaut, der von einer äußeren Schicht, die aus Wasser, Ammoniak und Methan besteht, eingefasst wird. Neptun Die Atmosphäre von Neptun besteht hauptsächlich aus Wasserstoff, Methan und Helium, ähnlich wie bei Uranus. Darunter ist eine Schicht aus flüssigem Wasserstoff, die auch flüssiges Helium und Methan beinhaltet. Die untere Schicht ist aufgebaut aus flüssigem Wasserstoff verbunden mit Sauerstoff und Stickstoff. Vermutlich besteht der Kern aus Gestein und Eis. Neptuns mittlere Dichte ist die höchste unter den Gasplaneten, wie auch der Kern in Relation zu denen anderer Gasplaneten der größte ist. ( Originaltext: http://solarsystem.nasa.gov/multimedia/display.cfm?IM_ID=283 (direct link: http://solarsystem.nasa.gov/multimedia/gallery/Neptune_Int.jpg ) Image source: http://sse.jpl.nasa.gov/multimedia/display.cfm?IM_ID=166 Deutsche Beschriftung von FrancescoA ) Image Credit: Lunar and Planetary Institute
Public domain
Datei:Gas Giant Interiors-de.png
The four gas giants in the solar system , from top: Neptune , Uranus , Saturn and Jupiter JPL image NASA
Public domain
Datei:Gas giants in the solar system.jpg
Relative masses of the gas giants Diese Datei wurde von diesem Werk abgeleitet: Masses of gas giants.png : Masses_of_gas_giants.png : kwami derivative work: Begoon
CC BY-SA 3.0
Datei:Masses of gas giants.svg
CC BY-SA 3.0
Datei:Wiktfavicon en.svg